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Magnetorheological (MR) suspensions and polymers are filled with microparticles of magnetically soft (magnetizable) 
ferromagnet or ferrite. A single filler particle under an applied field magnetizes virtually uniformly being a member of an 
assembly, as in a MR system, the particle, along with the external field, experiences the action of the fields induced by its 
neighbors. In result, the particle magnetization becomes non-uniform, and this fact strongly affects the attraction/repulsion 
interparticle forces. Because of that, all the dipole models, where the particles of finite size are replaced by point magnetic 
moments, are by definition approximate. However, they are widely in use due to their simplicity. In the present paper, in the 
framework of a two-particle problem we estimate the limits of applicability of the known dipole approximations of 
interparticle interaction and propose a new one, termed the nonlinear interacting dipole model. The advantage of the latter 
is that it accounts for the restrictions imposed on interparticle forces by the magnetic saturation of filler particles (e.g. iron) in 
real MR composites. 
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1. Introduction 

 
Magnetorheological (MR) or soft magnetic elastomer 

(SME) is a polymer matrix filled with microparticles of a 

ferromagnet or ferrite. Mechanical properties of such 

composites change considerably in response to applied 

magnetic fields, and this is the main cause of practical 

interest to those systems. Under an external field, the 

magnetostatic forces between the filler particles emerge 

which strive to re-arrange the inner structure of the 

composite. This, in turn, changes the macroscopic 

rheological properties of SMEs: the storage modulus, the 

intrinsic friction coefficient, etc. Due to that, the problem 

of interparticle magnetic forces is an essential issue of 

fundamental and applied magnetomechanics of SMEs. 

Conventional SMEs are filled with micron-size 

magnetic dispersions. A typical case is carbonyl iron with 

1–10 μm grains, see [1-4]. This is a magnetically soft 

material with the initial susceptibility 3 5

0 ~ 10 10   emu, 

whose magnetization saturates under a field of few kOe 

[5]. Therefore, a reference iron microparticle does not 

have any spontaneous magnetic moment. In a weak field it 

acquires magnetic moment   growing linearly with the 

field, while in a strong field   tends to a constant value, 

i.e., saturates. 

To describe the particle interaction in the presence of 

a static field 
0H  most often point dipole models are used. 

This kind of approximation implies that the interparticle 

distances by far exceed the reference particle size, so that 

the magnetic field and magnetization inside each particle 

might be treated as uniform. If one adopts for the 

ferromagnet a linear isotropic magnetization law, 

0= M H , then the magnetic moment of a particle of 

volume V  may be written as 
0= = =dV V Vμ M M H . 

For an isolated spherical particle, the strength of internal 

field is determined solely by the strength of the applied 

one, as 
0 0 0= (4 / 3) = (4 / 3)   H H M H H , and for 

the particle magnetic moment one has 

 

0

04
03

= .
1

V





μ H  (1) 

 

A magnetized dipolar particle is a source of its own 

field, which is defined by well-known expression [6]: 

 

3 5

( )
= 3 ,d

r r


 
μ μ r r

H  (2) 

 

where r  is the length of radius-vector r  of an arbitrary 

point in the surrounding space. 

Consider two dipolar particles subjected to an external 

field. The energy of this pair consists of two terms: the 

energy of interaction with the applied field (the doubled 

Zeeman energy of an isolated particle) and the interaction 

energy. The latter has the form [6]: 

 

1 2 1 2

12 3 5

( )( )
= 3 ;U

l l

  


μ μ μ l μ l
 (3) 

 

where l  is the center-to-center vector connecting particles 

1 and 2. Using definition U f , from Eq. (3) one gets 

a formula for the interparticle force: 
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which is convenient to present as a sum of two 

components as 

 

2 2

= ,

1
= , = .

n

n

U U

l l







      
       

     

f f f

l
f l f l l

l l

   (5) 

 

Thus one sees that the particle attraction / repulsion is 

determined by the central force 
nf  directed along vector l

, while f  characterizes the force couple tending to align 

the interparticle vector l  with the applied field. 

The basic convenience and advantage of the dipole 

models is that they ensure pair-wise interaction. In this 

case, calculation of energy for a multiparticle system 

reduces to summation over all the possible pairs. Right 

because of that, the dipolar approach became and still 

remains the main investigation “tool” in the theory of 

electro- and magetorheological suspensions and in the 

theory of magnetic elastomers as well. In the present 

paper, taking a pair of particles as a simplest representative 

element of an MR system, we compare the existing 

variants of dipolar models with each other and with the 

exact numerical solutions. For the case of iron-based 

SMEs, a new model is proposed, which is capable to 

determine the effect of the ferromagnet saturation on the 

interparticle forces. 

 

2. Linear interacting dipoles (LID model) 

 
The general criterion of the point-dipole model 

applicability is >>l a , where a  is the particle radius. 

This means that the particles are so remote that the 

difference in interaction between their closest and farthest 

elements is negligible. Therefore, with respect to magnetic 

interactions, a particle of finite size, even if its internal 

magnetization distribution is non-uniform, is characterized 

by means of a single vector, the magnetic dipole moment 

 . The magnetic field induced by a dipole is rendered by 

Eq. (2). This field diminishes with the distance by power 

law, i.e., is long-ranged. Due to that, the force experienced 

by a given particle is determined by the joint dipole field 

locH , which is induced at the point of particle location by 

all the other members of the assembly. For a magnetizable 

(polarizable) particle the value of its own magnetic 

moment   is a function of the combined field 

0ext loc H H H . 

Adding to the above-stated assumptions a hypothesis 

that the particle substance magnetizes according to the 

linear law 0= M H , one arrives at the linear interacting 

dipoles (LID) model [7,8]. Evidently, the particles 

considered in the framework of LID model are virtually 

(super)paramagnetic, for ferromagnet particles this model 

might be valid only in a weak field limit. 

Let us apply the LID model to a simplest representing 

element of a MR composite: a set of two spherical 

particles of the same radius a . Since the particles are 

identical in their magnetic properties, they as well possess 

coinciding magnetic moments 
1 2 =μ μ μ  and, thus, 

induce equal dipolar fields 
1 2= =loc loc dH H H . 

The point-dipole approximation is equivalent to the 

assumption that the particle magnetization is uniform, so 

that = Vμ M . In the problem under study, each particle is 

subjected to the external field 
0ext d H H H , which 

induces the internal field 

 

0= (4 / 3) = (4 / 3) .ext d   H H M H H M    (6) 

 

Substituting here 
dH  from (2), one arrives at the set of 

equations in the form 
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where 
ik  is unit tensor. 

Solution of Eqs. (7) yields the internal field strength 

H  according to the LID model. Using it, one is able to, 

first, find the magnetic moments of the particles and, then, 

to evaluate their dipole interaction energy: 

 

12 0 0 0= =  .U V   H H H             (8) 

 

To calculate the interparticle force from Eq. (8), we use 

Eq. (7) that ties up the strengths of external and internal 

fields. The result takes the form 
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As seen, differentiation of energy with respect to vector l  

reduces to taking a derivative of tensor ikA  in (7). 

Carrying out these simple calculations and returning to the 

notation 
0V H , one arrives at expression 

 

   
22
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3 5 6
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l l l
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f μ l l μ l μ      (10) 

 

which coincides with that obtained by differentiating the 

energy of a pair of dipoles with permanent magnetic 

moments (4). Thus, we have proven that the expression for 

the pair interparticle force preserves its form 

independently of whether the particle magnetic moments 

are spontaneous (permanent) or field induced. Right this 
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assumption was used by the authors of Refs. [7,8] when 

constructing their LID models. 

Following Eq. (5), we split the force (10) in two 

components 
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93
= ,   
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n
l l

l l


 


 
 

μ l ll
f

μ l l μ l μ
f

             (11) 

 

and compare the predictions on those functions given by a 

simple LD model (dipoles do not affect each other), the 

LID model and the exact solution, which fully takes into 

account mutual polarization of the particles [9]. In Fig. 1, 

this comparison is done for the reference iron particles 

with 3

0 = 10  emu. Fig. 1a shows the central force 
nf  for 

the head-to-tail pattern, i.e., zero angle   between vectors 

l  and 
0H ; Fig. 1b presents the angle dependence of the 

tangential force f . 

As seen, the more the particles approach one another 

(Fig.  1a) or the more the angle   tends to 45  (Fig. 1b) 

the greater the LD and LID models deviate from the exact 

solution. However, the LID model works a bit better. This 

is proven by Fig. 2, where the relative errors evaluated 

against the exact solution are given. Fig. 2 also establishes 

that the deviations of the dipole models from the exact 

solution are the smaller the lower is the particle magnetic 

susceptibility. The parameters at panes b) and c) of Fig. 2 

refer to two real systems. Pane b) characterizes the 

Dynabead microspheres with susceptibility 
0 = 0.08

 emu as reported in Ref. [8]; pane c) describes the 

superparamagnetic microspheres with susceptibility 

0 = 0.02  emu studied in Ref. [10]. Obviously, for the 

objects with low magnetic susceptibility even simple 

models might apply fairly well. 

 

 
 

Fig. 1. Interparticle forces from the LD model (dashes), 

LID model (solid lines) and from the exact solution 

(points); pane (a): the central force 
nf  at = 0 ; pane 

(b): the angle dependence of the tangential force f ; the 

interparticle    distance    is    = 2.1l a ,    the    magnetic  

susceptibility is 
3

0 = 10  emu. 

 

 

Note also that in the paramagnetic approximation 

(constant 0 ) all the forces grow quadratically with the 

field strength ( 2

0f H ). Because of that, under 

appropriate scaling, like that used at the ordinate axes in 

Fig. 1, the obtained dependences are universal. 

 

 
 

Fig. 2. Central force 
nf  evaluation errors with the LD (dashes) and LID (solid line) models in the  

= 0  configuration; the magnetic susceptibility 
3

0 = 10  (a); 0.08 (b); 0.02 emu (c). 

 

3. Nonlinear interacting dipoles (NID model) 

 
As mentioned, in ferromagnets the magnetization law 

resembles the linear one only in weak-to-moderate fields. 

With the increase of the field strength (for iron, up to few 

kOe), the particle magnetization increase, first, slows 

down and then stops: the particle enters the magnetization 

saturation regime. To describe such a behavior, one has to 

introduce a field-dependent magnetic susceptibility: 

 = HM H . Since typical MR composites are filled 

with iron, we take the nonlinear magnetization law in the 

Frölich-Kennelly (FK) form [5,11,12], presenting it in 

nondimensional units as 

0

0

= ,      = , = ;
1 s sh M M



 

h H M
m h m        (12) 

 

As seen, the FK ferromagnet has the initial 

susceptibility 0 , while under strong field its 

magnetization tends to sM  (saturation). 

For dilute MR systems  l a , the interaction of 

nonlinearly magnetizable particles might be described 

neglecting their reciprocal polarization. The only 

difference from the linear case is that the internal field is 

now found from equation 
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As the mutual influence of the particles is considered 

as insignificant, the directions of vectors h  and 
0h  

coincide, Eq. (13) becomes quadratic with respect to h . It 

has two solutions, one of which is unphysical. Discarding 

it, one gets the field strength inside the particle in the form 

 

2

0 0 0 0 0

0

0 0 0

0

36 (4 3 3)
=

6

(4 3 3)
.

6

h h
h

h

  



 



  

 


         (14) 

 

The magnetization curve 
0( )m h  of an isolated particle 

obtained from Eqs. (12) and (14) is shown in Fig. 3; for 
3

0 10  . As seen, in this case the magnetization 

crossover (transition from quasi-linear regime to 

saturation) takes place in a narrow interval around 

0 4 / 3h  . In a pair of particles, the same behavior 

should be inherent to the energy and to the interparticle 

force. 

 

 
 

Fig. 3. Magnetization of an isolated particle with initial 

susceptibility 
3

0 10   as a function of the external field  

strength. 

 

To evaluate the energy of a pair of magnetizable 

particles we use the general formula [6]: 

 

02 0
= = ( ) 2 .

s

U
U V d

M

     
  

h

m h h m h      (15) 

 

Substituting there the internal field from Eq. (14) and 

then subtracting the doubled energy of an isolated particle, 

one gets the proper interaction energy of the dipolar pair. 

Differentiation of this energy according to Eq. (5) yields 

the interaction forces nf  and f , which—as it is easy to 

show—coincide with the force components (4), i.e., with 

the result of direct differentiation of the dipolar energy. 

Formulas (12)-(14) define the simplest model 

describing pair interaction of nonlinearly magnetizable 

dipolar particles. We term it ND-model, and it in a natural 

way extends the above-introduced LD-model. Carrying on 

the analogy, we construct the nonlinear interacting dipoles 

(NID model). The field strength inside each of the 

particles is determined similarly to the linear case (6) with 

the only difference that ( )h  is now field-dependent. 

With allowance for saturation, the set (7) becomes 

nonlinear but does not change its general form: 
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  (16) 

 

Taking function ( )h  from the FK law (13), the set 

(16) is easily solvable numerically. To evaluate the 

interparticle forces, one may—following the standard 

procedure—substitute the found field strength h  in the 

energy (15) and then take the derivative with respect to l . 

However, much easier is to immediately use formula (4) 

for the interaction force. 

Fig. 4 presents the dependence of the 

attraction/repulsion forces on the external field for four 

orientations of the pair: = 0,  45 , 60 , 90    . The curves 

are obtained with the aid of the models of interacting 

linear and nonlinear dipoles (LID and NID) and the non-

interacting nonlinear dipoles model (ND); here, as in 

above, the value 3

0 10   is used. 

As seen, in the ND model the saturation regime 

indeed occurs in the vicinity of 
0 4 / 3h  . In the NID 

model, the situation is different. In the head-to-tail pattern, 

the field induced by the adjacent particle enhances the 

field inside the given one, while in the side-by-side 

orientation the effect of reciprocal magnetization is 

negative. Due to that, the particle pair aligned with the 

field  0l h  saturates easier  than  that  in  the 

perpendicular  configuration  0l h , cf. Figs. 4a and 4d. 

For the cases of pairs in tilted orientations (Figs. 4b and 

4c), the central force attains maximum at the saturation 

point and decreases afterwards. 

The force maxima in Fig. 4 are inherent only to the 

particles, whose magnetization saturates and, hence, could 

be understood only in the framework of the NID model. 

Let us clarify the origin of this effect. Note that the particle 

internal field h  is proportional to the vector sum of the 

external field 0h  and the field dh  induced by the adjacent 

dipole, see Eq. (6). In the linear and quasi-linear regimes 

of magnetization, the particle magnetic moment (and, thus, 

its contribution to 
dh  and to the magnetization of the 

neighbor particle) grows mostly in magnitude keeping the 

direction virtually constant. Hereupon, the attraction force 

goes up with the field, see Figs. 4b and 4c. In the 

saturation regime, the particle magnetic moments become 

constant in length and are able only to rotate. This means 

that in the sum (6), which determines orientation of vector 
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μ , the second and third terms virtually stop to change in 

absolute values. Meanwhile, the external field keeps 

growing. As a result, the internal field vector h  and, 

consequently, the particle magnetic moment align more 

and more with the external field, i.e., the angle   between 

μ  and 
0h  diminishes. The corresponding function 

0( )h  

is shown in Fig. 5. It also displays crossover behavior: the 

angle   remains virtually constant until the field attains a 

certain value but afterwards asymptotically goes down to 

zero. 

The plots of Fig. 4 correspond to the center-to-center 

distance 2.1l a . At this value of the gap, the linearly 

magnetizable particles attract each other in the angle 

interval 0 75    [9]. If the saturation regime is on, and 

the magnetic moments are independent of the applied 

field, then the particle interaction might be described with 

the model of permanent dipoles [13]. For those, the 

orientation angle interval of attraction is independent of l  

and ranges 0 54.7   , i.e., is substantially narrower 

than that for magnetizable particles. This fact explains, 

why for the pair with 45    the interaction in strong 

fields remains attractive (Fig. 4b), while for the pair with 

60    the field growth turns the interaction into 

repulsion (Fig. 4c). 

Let us compare the dependence of force 
nf  on the 

interparticle distance as predicted by different models. In 

Fig. 6 this is done for configuration = 0  . In under-

saturating fields (Fig. 6a) the results of LID and NID 

models (dotted and solid lines) are very close. In the 

intermediate field range (Fig. 6b) the dependence yielded 

by the NID model (solid line) is fairly well approximated 

by the ND model (dashes), in high fields these models 

virtually coincide (Fig. 6c). 

 

 
 

Fig. 4. Central force for = 2.1l a  under variation of the 

pair orientation: = 0  (a), 45  (b), 60  (c), 90  (d); 

the model results are: ND (dashes), LID (points), NID 

(solid line). 

 

 
Fig. 5. The angle   between the external field 

0h  and 

magnetic moment μ  for = 2.1l a  as a function of 
0h  

for the pair orientations:  = 15   (1),  30  (2),  45  

(3),  

                             60  (4) and 75  (5). 

 

 

 
 

Fig. 6. Central force 
nf  for = 0  as a function of the interparticle distance according to the LID model (dots), 

 ND model (dashes), and NID model (solid line) under the fields 
0 = 3h  (a), 4 (b), 5 (c). 
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4. Interparticle forces with allowance for  
     magnetization saturation 

 
As known, a pair of dipole particles subjected to a 

uniform external field experiences mutual attraction in the 

head-to-tail pattern and repulsion in the side-by-side 

geometry. For the case of permanent point dipoles, the 

central force 
nf  inverses its sign (attraction to repulsion) 

when the angle   exceeds 54.7  and this boundary value 

does not depend neither on the interparticle distance nor 

on the applied field strength. In the case of magnetizable 

particle such dependences readily emerge. 

In Fig. 7a a pair of particles is schematically 

presented, the origin of the coordinate framework is set at 

the center of particle 1. Under close contact distance 

 2l a , the center of particle 2 is positioned on the ark 

plotted by thick dashes. The examples of other isolines 

l  const are drawn by dashed arcs. The neutral curves in 

Fig. 7a, which go approximately radially, are the loci of 

the points where 0nf   as given by the NID model. The 

region above a neutral curve corresponds to particle 

attraction, the area below it—to their repulsion. The 

straight line that goes under the angle 
0 55   to the 

vertical axis, shows the neutral line for permanent point 

dipoles. 

The neutral lines for the LID model are not shown but 

they, as expected, closely follow those of the NID model 

in the field-range below saturation  0 4 / 3h  . In this 

field range the shift of the neutral curve and the width of 

the angle interval of attraction are maximal. For example, 

at 
0 4h   and upon the particle contact, the angle interval 

of attraction is 0 64.6   . The width of this interval as 

a function of external field is shown in Fig. 7b for the 

interparticle distances l  corresponding to the radii of the 

arcs in Fig. 7a. For linearly magnetizable particles in 

contact, the exact solution predicts the widest interval: 

0 84    [9]. 

 

 
Fig. 7. The results of the NID model: a) the approximately radial lines at the schematic view of the pair are neutral 

curves  0nf   for 
0 = 4h  (solid line), 8 (dashes), 20 (points); b) the width of the attraction angle interval as a 

function of the applied field strength for center-to-center  distances  2l a  (1),  2.1a (2),  2.5a (3),  3a (4),  4a (5). 

 

 

 
 

Fig. 8. Central force nf  as a function of the center-to-center distance at = 60   in the field 0 = 4h  (a), 5 (b), 6 (c); LID model 

(points), ND model (dashes), NID model (solid line). 

 

In Fig. 8 the dependence of nf  on the center-to-center 

distance is presented for = 60   and for several values of 

the external field. All the curves rendered by the ND 

model are located beneath the abscissa axis that implies 

mutual repulsion of the particles. The forces predicted by 

the LID model change sign at a fixed interparticle distance 

whatever the applied field. Below transition to saturation (

0 = 4h ), the force predicted by the NID and LID models 

coincide. However, with the field growth, the differences 

between LID and NID enhance, and this deviation is 

accompanied by reduction of the interparticle distance at 

which the force inversion takes place. 

The effect of magnetic saturation on the tangential 

interparticle force is somewhat unexpected. Saturation 
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turns out to be a factor that breaks the angle symmetry of 

function ( )f  . We remind that for permanent dipoles as 

well as in LD, LID and ND models, the dependence of the 

pair energy on the angle   comes out exactly as 2cos   

[14-17]. Thus, for the tangential force in either model one 

has sin 2f  . The particles whose magnetization 

saturates, lack such universality. The NID model enables 

one to reveal this effect and to estimate its magnitude, see 

Figs. 9 and 10. As follows from them, the maximum of f  

shifts to greater angles the stronger the higher the field 
0h  

and the shorter is the distance between the dipoles. 

 

 
 

Fig. 9. Tangential force f  for = 2.1l a : a) as a 

function of angle in the field 
0 = 3h  (I) and 4 (II); ND 

model (dashes), NID model (solid lines); b) as a function 

of external field, dashes show the results of the ND model 

for = 15   and 75  (3), = 30   and 60  (6); solid 

lines correspond to the NID model  for  = 15   (1)  and  

75  (2), 30  (4) and 60  (5). 

 

 
 

Fig. 10. Angle  dependence  of  f  at  0 = 4h   for  the 

center-to-center distances =l 2.5a (1), 2.1a (2), 2a (3); 

the ND model (dashes), the NID model (solid lines). 

 

As follows from Fig. 9a, the ND model in the under-

saturation fields renders equal values of f  for the particle 

pairs with the orientation angles equally remote from 

45   ; for example, = 30   and 60 . However, due to 

the anisotropy of magnetic interactions, the dipoles in the 

first configuration saturate at lower field than those in the 

second one. As shown in Fig. 9b, the particle interaction in 

a pair with < 45  keeps growing (solid curves 1 and 4) 

and approaches the limiting value (established by the ND 

model) from beneath. In the configurations where > 45  

this force, on attaining maximum, goes down and tends to 

the same limit from above (solid curves 2 and 5). 

5. Discussion and conclusions 

 
The results of comparing various models employed 

for describing magnetic interaction between ferromagnet 

microparticles are described. 

Magnetic saturation is an effect that takes control over 

the mechanical characteristics of MR composites in the 

moderate-to-strong field range. It is an issue of high 

interest in the corresponding science and technology. This 

problem had been to some extent addressed with regard to 

MR suspensions, where iron microparticles readily crowd 

together when a field is imposed. In MR polymers the 

situation is different since the particles sit in an elastic 

environment that prevents their massive crowding. So, for 

magnetized MR polymers more typical is formation of 

groups of just few particles, the case, about which quite a 

little is known both in theory and experiment. 

In the present work, we take as a representing element 

of a MR elastomer a set of two identical spherical 

particles. To account for the fact that typically the MR 

systems are filled with microdisperse iron, the magnetic 

constitutive equation for the particle substance is taken in 

the FK form. 

Even a two-particle problem with allowance for 

magnetic saturation becomes nonlinear and could be 

solved in full only numerically requiring big spends of 

computer resources. However, as our analysis shows, the 

true numerical solution is really necessary only under 

sufficiently strong fields. In the field range below the 

saturation region the solution with admissible accuracy 

(less than 5%) might be obtained assuming that the 

particles magnetize linearly, and the latter problem has 

analytical solutions [14-17]. Another occasion, where a 

simple solution is acceptable is the case of sufficiently 

dilute dispersion. Here, depending on the values of 

interparticle distance l  and the applied field strength 
0h , 

one may use one of the dipolar models. 

The diagram indicating the ranges where a specific 

model suffices to characterize the particle pair that 

occupies head-to-tail configuration, i.e., has 0  , is 

presented in Fig. 11. This map is plotted as a result of 

comparison of approximate and numerical data. The 

parameter plane 0( ,  / )h l a  is divided in six regions, and in 

four of them (regions 3-6) one of the above-discussed 

dipole models suffices to evaluate the interparticle forces 

with accuracy better than 5%. 

Regions 1 and 2 in Fig. 11 do not admit any dipolar 

approximation. In region 1 the particles neighbor each 

other so closely that the internal field strength in each of 

them is around the saturation level, i.e., the function ( )m h  

is highly nonlinear. Due to that, the result could be 

obtained only by numerical solution of a nonlinear 

magnetostatic problem. In region 2, although the internal 

field is below saturation, the closeness of the particles 

entails the necessity to take into account not only the 

dipole but the higher multipole contributions to the 

interaction as well. This is done by summing up [9] the 

multipole series derived analytically, see [15]. 
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The NID model proposed in this paper, “takes care” 

of an important region on the diagram of Fig. 11, viz. the 

particles in nearly tight contact  / 2l a  in the field 

interval 
03.5 4.5h  , where the magnetization saturation 

occurs in full. Without this new model, all this area would 

have been accessible only with the aid of numeric solution. 

Usefulness and predictive ability of the NID model is 

demonstrated by discovering (i) the non-monotonic 

dependence of the central force on the applied field and 

(ii) the angle symmetry breakdown of the tangential force 

f . It is worth noting that in the past in the course of 

numerical work we have encountered certain 

manifestations of those peculiarities. However, at that time 

we did not have explanations for them. The NID model, 

having simplified substantially the analysis of interparticle 

magnetic forces, provided clear proofs that the above-

mentioned nonlinear effects originate from the particle 

magnetic saturation. 

 

 
 

Fig. 11. Model applicability diagram (accuracy better 

than 5%) for the dipole models in the case = 0 : 

nonlinear numerical solution is required (1), linear 

multipole solution is required (2), NID applies (3),  LID  

applies (4), ND applies (5), LD applies (6). 

 

 
The diagram of Fig. 11 describes the situation only for 
0  . Evidently, when the angle   changes, the 

boundaries would deform. Not presenting here the plots 
for non-zero  , we remark in this connection that since in 
the side-by-side pattern  90    the fields of 
neighboring particles weaken each other, then the regions 
of validity of the models should extend in comparison with 
the configuration 0  . This would diminish the area of 
region 1, thus enhancing the range of applicability of the 
dipole models. 

It is worthwhile to remark that although the FK model 
is a well-known and trusted approximation for iron, it is by 
no means a unique one. We employ it here for two main 
reasons. First, it is very simply parametrized and, thus, 
convenient for calculations. Second, it possesses the 
essential feature of any magnetically soft ferromagnet: the 
anhysteretic nonlinear magnetization curve. Evidently, 
other models of saturating magnetization could be used 
with their own ( )M H  curves inherent to the particle 
material. Such a replacement would with necessity shift 

quantitatively the force and energy dependences against 
those presented here. However, all the qualitative features 
of the field-induced behavior revealed with the aid of the 
FK model, would remain the same. In other words, the 
NID model provides a kind of “framework” that would 
readily work with any nonlinear magnetization law 
ascribed to the material in question. 
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